SOA Distilled

Udi Dahan – The Software Simplist

.NET Development Expert & SOA Specialist
Microsoft Solutions Architect MVP
Udi Dahan - The Software Simplist

Consulting, Mentoring & Training
Helping you Keep It Simple

www.UdiDahan.com email@UdiDahan.com
SOA is all about reducing coupling
What is coupling?

- A measure of dependencies
- If X depends on Y, there is coupling between them
- 2 kinds of coupling: Afferent (Ca), Efferent (Ce)
What is coupling?

- Afferent coupling (Ca) – who depends on you
- Efferent coupling (Ce) – on who you depend
What is coupling?

- If X depends on Y then:
 - X is efferently coupled to Y
 - Y is afferently coupled to X
Coupling at the systems level

Ce: The number of classes in system X that depend on something belonging to system Y

Ca: The number of classes in system Y that something in an external systems depends on
Coupling at the systems level

Ce: The number of classes in system X that depend on something belonging to system Y.

If Y changes in some way, how many changes do we have to make in X?

Ca: The number of classes in system Y that something in an external systems depends on.

In what ways can we change Y safely?
Loose Coupling at the systems level

- Attempt to minimize afferent and efferent coupling
- Zero coupling isn’t really possible
- 3 Different aspects of coupling for systems:
 - Platform
 - Temporal
 - Spatial
Coupling Aspect #1: Platform

- Also known as “Interoperability”
- Using protocols only available on one platform
 - Remoting
 - Enterprise Services
 - Datasets over Web Services
- One of the famous 4 Tenets:
 - “Share contract and schema, not class or type”
Coupling Aspect #2: Temporal

Processing time of Service B affects that of A
Coupling Aspect #3: Spatial
Coupling Aspect #3: Spatial

Service A

Service B
Coupling Aspect #3: Spatial

Can communication automatically continue?
Coupling Aspects: Solutions
Coupling Aspect #1: Platform

- XML on the wire.
- XSD (schema) describing XML structure
- Use standards based transfer protocol like http
- Standards based description of message flow
 - WSDL (only supports request/response)
 - SSDL (supports richer semantics)
Coupling Aspect #2: Temporal - 1

Bad. Resources are held while waiting.
Resources are held while waiting. Increased load on service B per consumer (impacted by polling interval)
Coupling Aspect #2: Temporal - final

Good. By separating (in time) the inter-service communication and the request handling
Asynchronous messaging makes it difficult to have transactions cross boundaries.

Don’t let transactions flow between services.

Autonomy means not letting any one lock something that’s yours.
Coupling Aspect #3: Spatial

- Application level code should not need to know where cooperating services are on the network.
- Delegate communications to “something else”, let’s call it an “agent” for now.
 - `myAgent.Send(message);`
- How does the agent know which destination to send the message to?
Coupling Aspect #3: Spatial

- Either the agent uses communications like multicast that don’t require knowledge of specific locations.
 - Messaging infrastructure that supports topics does this internally (JMS for example)

- Or the agent needs to communicate with other agents on the network to know where everybody is.
But if the application code doesn’t tell the agent which *logical* destination to send the message to, how would the agent know?

If there was a direct mapping from message type to logical destination, then this API would be enough:

```c
void Send(IMessage message);
```
Summary

- Loose coupling is more than just a slogan
- Coupling is a function of 5 different dimensions

Platform

Spatial

Temporal

Afferent

Efferent
Thank you
Udi Dahan - The Software Simplist

Consulting, Mentoring & Training
Helping you Keep It Simple

www.UdiDahan.com email@UdiDahan.com