
42 The Architecture Journal 21

Summary

This article proposes that event-driven architecture 
(EDA) and service-oriented architecture (SOA) are really 
two sides of the same coin.

Introduction
While event-driven architecture 
(EDA) is a broadly known topic, both 
giving up ACID integrity guarantees 
and introducing eventual consistency 
make many architects uncomfortable. 
Yet it is exactly these properties 
that can direct architectural efforts 
toward identifying coarsely grained 
business-service boundaries—
services that will result in true IT-business alignment.

Business events create natural temporal boundaries across 
which there is no business expectation of immediate consistency 
or confirmation. When they are mapped to technical solutions, the 
loosely coupled business domains on either side of business events 
simply result in autonomous, loosely 
coupled services whose contracts 
explicitly reflect the inherent publish/
subscribe nature of the business.

This article will describe how all of 
these concepts fit together, as well as 
how they solve thorny issues such as 
high availability and fault tolerance.

Commands and Events
To understand the difference in nature between “classic” service-
oriented architecture (SOA) and event-driven architecture (EDA), we 
must examine their building blocks: the command in SOA, and the 
event in EDA.

In the commonly used request/response communication pattern of 
service consumer to service provider in SOA, the request contains the 
action that the consumer wants to have performed (the command), 
and the response contains either the outcome of the action or some 
reaction to the expressed request, such as “action performed” and 
“not authorized.”

Commands are often named in imperative, present-tense form—
for example, “update customer” and “cancel order.”

In EDA, the connection between event emitters and event 
consumers is reversed from the previously described SOA pattern. 

Consumers do not initiate communication in EDA; instead, they 
receive events that are produced by emitters. The communication 
is also inherently unidirectional; emitters do not depend on any 
response from consumers to continue performing their work.

Events are often named in passive, past-tense form—for example, 
“customer updated” and “order cancelled”—and can represent state 
changes in the domain of the emitter.

Events can be thought of as mirror images of the commands in 
a system. However, there might be cases in which the trigger for an 
event is not an explicit command, but something like a timeout.

Business Processes with Commands and Events
The difference between commands and events becomes even more 
pronounced as we look at each one as the building block in various 
business processes.

When we consider commands such as “create customer” and 
“create order,” we can easily understand how these commands can be 
combined to create more involved scenarios, such as: “When creating 
an order, if a customer is not provided, create a new customer.” This 
can be visualized as services that operate at different layers, as shown 
in Figure 1.

One can also understand the justification for having activity 
services perform all of their work transactionally, thus requiring one 
service to flow its transactional context into other lower-level services. 
This is especially important for commands that deal with the updating 
of data.

When working with commands, in each step of the business 
process, a higher-level service orchestrates the work of lower-level 
services.

When we try to translate this kind of orchestration behavior into 
events, we must consider the fact that events behave as mirror images 
of commands and represent our rules by using the past tense.

Event-Driven Architecture: 
SOA Through the Looking Glass
by Udi Dahan

ACID is an acronym for 
Atomicity, Consistency, 
Isolation, Durability: a 
set of properties that 
traditionally describe 
database transactions.

A temporal boundary is a 
boundary on the axis of 
time, where one side of 
the boundary exists in a 
time-frame disjoint from 
the other side.

Figure 1: Commands and service orchestration

Entity
Services Create 

Customer
Create 
Order

Activity
Services Create 

Order



43

Event-Driven Architecture: SOA Through the Looking Glass

The Architecture Journal 21

Instead of: “When creating an order, if a customer is not provided, 
create a new customer.”

We have: “When an order has been created, if a customer was not 
provided, create a new customer.”

It is clear that these rules are not equivalent. The first rule implies that 
an order should not be created unless a customer—whether provided 
or new—is associated with it. The second rule implies that an order 
can be created even if a customer has not been provided—stipulating 
the creation as a separate and additional activity.

To make use of EDA, it is becoming clear that we must think about 
our rules and processes in an event-driven way, as well as how that 
affects the way in which we structure and store our data.

Event-Driven Business Analysis and Database Design
When we analyze the “When an order has been created, if a customer 
was not provided, create a new customer” rule, we can see that a clear 
temporal boundary splits it up into two parts. In a system that has this 
rule, what we will see is that at a given point in time, an order might 
exist that does not have a corresponding customer. The rule also 
states the action that should be taken in such a scenario: the creation 
of a new customer. There might also be a nonfunctional requirement 
that states the maximum time that should be allowed for the action to 
be completed.

From a technical/database perspective, it might appear that we 
have allowed our data to get into an inconsistent state; however, that 
is only if we had modeled our database so that the Orders table had a 
non-nullable column that contained CustomerId—a foreign key to the 
Customers table. While such an entity-relationship design would be 
considered perfectly acceptable, we should consider how appropriate 
it really is, given the requirements of business consistency.

The rule itself indicates the business perspective of consistency; 
an order that has no connection to a customer is valid, for a certain 
period of time. Eventually, the business would like a customer to be 
affiliated with that order; however, the time frame around that can be 
strict (to a level of seconds) or quite lax (to a level of hours or days). It 
is also understandable that the business might want to change these 
time frames in cases in which it might provide a strategic advantage. 
An entity-relationship design that would reflect these realities 
would likely have a separate mapping table that connected Orders 
to Customers—leaving the Orders entity free of any constraint that 
relates to the Customers entity.

That is the important thing to understand about eventual 
consistency: It starts by identifying the business elements that do not 
have to be 100-percent, up-to-the-millisecond consistent, and then 
reflecting those relaxed constraints in the 
technical design.

In this case, we could even go so far as to 
have each of these transactions occur in its 
own database, as shown in Figure 2.

Benefits	of	Event-Driven	Architecture
Given that EDA requires a rethinking of the 
core rules and processes of our business, 
the benefits of the approach must be quite 
substantial to make the effort worthwhile—
and, indeed, they are. By looking at Figure 2, 
we can see very loose coupling between the 
two sides of the temporal boundary. Other 
than the structure of the event that passes 

from left to right, nothing is shared. Not only that, but after the event 
is published, the publisher no longer even needs to be online for the 
subscriber to process the event, so long as we use a durable transport 
(such as a queue).

These benefits become even more pronounced when we consider 
integration with other systems. Consider the case in which we want 
to integrate with a CRM, whether it is onsite or hosted in the cloud. In 
the EDA approach, if the CRM is unavailable (for whatever reason), the 
order will still be accepted. Contrasting this with the classic command-
oriented service-composition approach, we would see there that the 
unavailability of the CRM would cause the entire transaction to time 
out and roll back. The same is true during integration of mainframes 
and other constrained resources: Even when they are online, they 
can process only N concurrent transactions (see Figure 3). Because 
the event publisher does not need to wait for confirmation from any 
subscriber, any transactions beyond those that are currently being 
processed by the mainframe wait patiently in the queue, without any 
adverse impact on the performance of order processing.

If all systems had to wait for confirmation from one another—as is 
common in the command-oriented approach—to bring one system 
to a level of 5 nines of availability, all of the systems that it calls would 
need to have the same level of availability (as would the systems 
that they call, recursively). While the investment in infrastructure 
might have business justification for one system (for example, 
order processing), it can be ruinous to have to multiply that level of 
investment across the board for nonstrategic systems (for example, 
shipping and billing).

Figure 2: Event-driven data flows

Order 
Created

Customer 
Provided?

Create 
Customer

T

Order ID +
Other Data

Orders OrdToCust Customers

Figure 3: Load-leveling effect of queues between publishers and subscribers

Order
Processing MainframeQ

Time

Load

Time

Load



Event-Driven Architecture: SOA Through the Looking Glass

The Architecture Journal 2144

In companies that are undergoing mergers or acquisitions, the 
ability to add a new subscriber quickly to any number of events from 
multiple publishers without having to change any code in those 
publishers is a big win (see Figure 4). This helps maintain stability of 
the core environment, while iteratively rolling out bridges between 
the systems of the two companies. When we look practically at 

bringing the new subscriber online, we can take the recording of 
all published events from the audit log and play them to the new 
subscriber, or perform the regular ETL style of data migration from 
one subscriber to another.

IT-Business Alignment, SOA, and EDA
One of the more profound benefits that SOA was supposed to 
bring was an improved alignment between IT and business. While 
the industry does not appear to have settled on how this exactly 
is supposed to occur, there is broad agreement that IT is currently 
not aligned with business. Often, this is described under the title of 
application “silos.”

To understand the core problem, let us try to visualize this lack of 
alignment, as shown in Figure 5.

What we see in this lack of alignment is that IT boundaries are 
different from business boundaries, so that it is understandable that 
the focus of SOA on explicit boundaries (from the four tenets of 
service orientation) would lead many to believe that it is the solution. 
Yet the problem that we see here is while there are explicit technical 
boundaries between App 1 and App 2, the mapping to business 
boundaries is wrong.

Service-Oriented Architecture and Its Implication 
in Business
by Manoj Manuja, Rajender Kalra, and Ruchi Malhotra

Service-oriented architecture (SOA) is one of the more buzzed 
architectures that are being adopted in business these days. It is 
meant to create a business model that is agile, flexible, and cost-
effective. SOA is complemented by event-driven architecture (EDA). 
An EDA can be designed with systems that produce and transmit 
events among the loosely coupled service-oriented systems. These 
events fire certain triggers that, in turn, activate the services.

This can be depicted by a case study of a learning and assessment 
system that exists in a business enterprise (see Figure 1). The whole 
enterprise is driven by an SOA that is designed to handle and 
integrate copious subsystems. The learning infrastructure that is 
in place is meant to develop the competency of employees on 
various technologies that are prevalent in the software industry. 
There is a separate team of technology experts in place who run the 
complete infrastructure. The company relies on its own proprietary 
study material and other artifacts for training and assessment of its 
employees.

The whole infrastructure for the management and access of these 
artifacts by the technology-focus team and the employees of the 
company has been automated by using Microsoft Office SharePoint 
Server (MOSS) 2007, which is the latest portal-development product 
from Microsoft. The artifacts are updated on a monthly basis. 
This process is decentralized and is performed by the respective 
technology teams.

In this process, some events are produced that, in turn, fire 
triggers. The triggers activate services that exist in the complete 
organizational infrastructure that is based on SOA. The services 
carry out tasks such as sending e-mail notifications to the concerned 
persons, maintaining an audit record of the documents, verifying the 
document template and format, and logging the modification date 
and the name of the user who has performed the update. In this way, 
the SOA of the entire organization is supported by the event-based 
system that is implemented by using MOSS 2007, as shown in Figure 1.

The role of EDA in implementing SOA is very significant. The 
functioning of the various services that form part of a SOA can 
depend on the occurrence of certain events. In the case study that 
is discussed in this article, the use of MOSS 2007 for management of 
the company’s learning and assessment system largely contributed 

to the management of documents, as well 
as the running of the SOA infrastructure 
within the enterprise. The use of MOSS 2007 
decentralizes the whole process, and the 
events that are produced in it also drive 
the SOA services. Along with EDA, SOA 
implementation in an enterprise leads to 
better productivity and improved customer 
satisfaction, as it provides increased control 
over business.

Manoj Manuja (Manoj_Manuja@infosys.
com), Rajender Kalra (Rajender_Kalra01@
infosys.com), and Ruchi Malhotra 
(Ruchi_Malhotra@infosys.com) belong to the 
Education and Research Department, Infosys 
Technologies Limited, in Chandigarh, India.

Figure 1: SOA supported by EDA implemented by using MOSS 2007

Verifying document 
template and format

Logging modification 
date and user name

Sending e-mail 
notifications

Maintaining audit 
record of documents

Event generation and 
processing

Learning and assessment system implemented by using MOSS 2007

Uploading of 
artifacts

EDA components

SOA components

Figure 4: Adding new subscriber to existing publisher

Publisher Existing
Subscriber

New
Subscriber

Subscribe

Subscribe

mailto:Manoj_Manuja%40infosys.com?subject=
mailto:Manoj_Manuja%40infosys.com?subject=
mailto:Rajender_Kalra01%40infosys.com?subject=
mailto:Rajender_Kalra01%40infosys.com?subject=
mailto:Ruchi_Malhotra%40infosys.com?subject=


45

Event-Driven Architecture: SOA Through the Looking Glass

The Architecture Journal 21

If SOA is to have any chance of improving IT-business alignment, the 
connection between the two needs to look more like the one that is 
shown in Figure 6.

One could describe such a connection as a service “owning” or 
being responsible for a single business domain, so that anything 
outside the service could not perform any actions that relate to that 
domain. Also, any and all data that relates to that domain also would 
be accessible only within the service. The EDA model that we saw 
earlier enabled exactly that kind of strict separation and ownership—
all the while, providing mechanisms for interaction and collaboration.

We should consider this strong connection when we look at 
rules such as: “When an order has been created, if a customer was 
not provided, create a new customer.” The creation of the order as 
an object or a row in a database has no significance in the business 
domain. From a business perspective, it could be the acceptance or 
the authorization of an order that matters.

What SOA brings to EDA in terms of IT-business alignment is the 
necessity of events to represent meaningful business occurrences.

For example, instead of thinking of an entity that is being deleted 
as an event, you should look for the business scenario around it—
for example, a product that is being discontinued, a discount that 
is being revoked, or a shipment that is being canceled. Consider 
introducing a meaningful business status to your entities, instead of 
the technically common “deleted” column. While the business domain 
of sales will probably not be very interested in discontinued products 
and might treat them as deleted, the support domain might need to 
continue troubleshooting the problems that clients have with those 
products—for a while, at least. Modern-day collaborative business-
analysis methodologies such as value networks can help identify these 
domains and the event flows between them.

What an EDA/SOA Service Looks Like
In the context of combined EDA and SOA, the word “service” is 
equivalent to a logical “thing” that can have a database schema, Web 
Services, and even user-interface (UI) code inside it. This is a very 
different perspective from the classic approach that considers services 
as just another layer of the architecture. In this context, services cut 
across multiple layers, as shown in Figure 7.

In this model, the processes that are running on various computers 
serve as generic, composite hosts of service code and have no real 
logical “meat” to them.

When we look at the code in each of the layers in light of the business 
domain that it addresses, we tend to see fairly tight coupling between 
a screen, its logic, and the data that it shows. The places in which we 
see loose coupling is between screens, logic, and data from different 
business domains; there is hardly any coupling (if at all) between 
the screen that shows employee details and the one that is used to 
cancel an order. The fact that both are screens and are categorized 
in the UI “layer” appears not to have much technical significance (if 
any business significance). Much the same can be said for the code 
that hooks those screens to the data, as well as the data structures 
themselves.

Any consistency concerns that might have arisen by this separation 
have already been addressed by the business acceptance of eventual 
consistency. If there are business demands that two pieces of data 
that have been allocated to different services always be consistent, 
this indicates that service boundaries are not aligned with business 
boundaries and must be changed.

This is extremely valuable. Architects can explain to the business 
the ramifications of their architectural decisions in ways that the 
business can understand—“There might be a couple of seconds 
during which these two bits of data are not in sync. Is that a 
problem?”—and 
the answer to those 
kinds of question is 
used to iterate the 
architecture, so as to 
bring it into better 
alignment with the 
business.

As soon as 
service boundaries 
reflect business 
boundaries, there is 
great flexibility within 
each service; each 
can change its own 
database schema 
without having to 
worry about breaking 
other services, or 
even choose to 
change vendors 
and technology to 

Figure 5: Lack of IT-business alignment

Domain A

Domain B

App 1

App 2

Business IT

Figure 6: Services aligned with business boundaries

Domain A

Domain B

Service 1

Service 2

Business IT

Figure 7: Services logically connecting code 
from different layers

UI

BL

DAL

DB



Event-Driven Architecture: SOA Through the Looking Glass

The Architecture Journal 2146

such things as object or XML databases. Interoperability between 
services is a question of how event structures are represented, as well 
as how publish/subscribe is handled. This can be done by using basic 
enterprise service bus (ESB) functionality, such things as the Atom 
Publishing Protocol, or a mix.

Integration of legacy applications in this environment occurs 
within the context of a service, instead of identifying them as services 
in their own right. Use of Web Services to ease the cost of integration 
continues to make sense; however, from the perspective of a business 
domain, it really is nothing more than an implementation detail.

Conclusion
EDA is not a technical panacea to Web Services–centric architectures. 
In fact, attempting to employ EDA principles on purely technical 
domains that implement command-centric business analysis will 
almost certainly fail. The introduction of eventual consistency without 
the ratification of business stakeholders is poorly advised.

However, if in the process of architecture we work collaboratively 
with the business, map out the natural boundaries that are 
inherent in the organization and the way in which it works, and 
align the boundaries of our services to them, we will find that the 
benefits of EDA bring substantial gains to the business in terms of 
greater flexibility and shorter times to market, while its apparent 
disadvantages become addressed in terms of additional entity 
statuses and finer-grained events.

By itself, EDA ignores the IT-business alignment of SOA—so critical to 
getting boundaries and events right. Classic SOA has largely ignored 
the rock-solid foundation of publish/subscribe events—dead Web 
Services eventing and notification standards notwithstanding. It is 
only in the fusing of these two approaches that they overcome the 
weaknesses of each other and create a whole that is greater than the 
sum of its parts.

Interestingly enough, even though we have almost literally turned 
the classic command-driven services on their heads, the service-
oriented tenets of autonomy and explicit boundaries have only become 
more pronounced, and the goal of IT-business alignment is now within 
our grasp.

Beyond just being a sound theoretical foundation, this architecture 
has weathered the trials of production in domains such as finance, 
travel and hospitality, aerospace, and many others—each with its own 
challenging constraints and nonfunctional demands. Organizations 
have maximized the effectiveness of their development teams by 
structuring them in accordance with these same service boundaries, 
instead of the more common technical specialization that corresponds 
to layered architectures. These loosely coupled service teams were able 
to wring the most out of their agile methodologies, as competition for 
specialized shared resources was eliminated.

Oracle once named this approach SOA 2.0. Maybe it really is the 
next evolutionary step.

Toward Web-Scale SOA
by Carlos Pedrinaci, Elena Simperl, Reto Krummenacher, 
and Barry Norton

Opening SOA technologies to the Web has important implications 
from an engineering perspective, as well as with respect to the usage 
of technology that one should expect and accommodate. Typically, 
these implications have been overlooked; as a consequence, SOA 
remains mostly an enterprise-specific solution, and its adoption for 
supporting the creation of distributed systems on the Web has largely 
fallen behind initial expectations.

The Web is built upon the essential principle of openness, which 
has defined its character and led to its growth to become the world’s 
richest source of information in its 20 years of existence. Anyone 
can provide information, and anyone else can use this information 
for whatever purpose is deemed appropriate. However, this lack of 
centralized control and the scale that characterizes the Web clash with 
current Web Services and SOA-based solutions, in which services are 
typically known in advance and stored in some centralized repository, 
and flexibility in consumption is not contemplated.

A second Web principle of particular relevance is the basis 
of communication through persistent publication. This style of 
communication allows efficient asynchronous communication 
between one provider and many (possibly unknown) consumers. This 
simple mechanism supports an unprecedented level of creation, flow, 
and recombination of information, which contributes significantly 
to the enrichment of the Web. In contrast, service-oriented systems 
are most often limited to communication on the basis of one-to-one 
synchronous messaging. This fails to take into account that systems 
might suddenly disappear and new consumers who have different 
requirements might appear, and it maintains unnecessarily a strict 
separation between procedures and data.

The E.U. project that is known as Service Oriented Architectures 
for All (SOA4All) is working toward an architecture and language stack 

for a service-delivery platform that fosters the Web-scale adoption 
of service technologies. This architecture extends SOA with essential 
principles upon which the Web builds, such as openness and the 
support for communication that is based on persistent publication. 
Additionally, we adopt semantic technologies as a means to lift 
services and their descriptions to a level of abstraction that deals 
with computer-understandable conceptualizations, so as to increase 
the level of automation that can be achieved while carrying out 
common tasks during the life cycle of services, such as their discovery, 
composition, and invocation.

Further extensions come from the adoption of Web 2.0 
principles—notably, the tight integration of people as service 
prosumers and RESTful services as a technology that complements 
traditional Web services. Finally, automated context-adaptation 
capabilities are embedded within the architecture to support the use 
of services in unforeseen contexts—thus, increasing the versatility of 
services while retaining their manageability.

For more information, visit the Service Oriented Architectures for 
All (SOA4All) Web site.

Dr. Carlos Pedrinaci is a research fellow at the Knowledge Media 
Institute (KMi) at the Open University, United Kingdom.

Dr. Elena Simperl works as senior researcher and vice-director of the 
Semantic Technology Institute at the University of Innsbruck.

Reto Krummenacher is researcher and project assistant for the 
Semantic Technology Institute at the University of Innsbruck.

Barry Norton is a senior researcher for STI Innsbruck at the University 
of Innsbruck.

http://www.soa4all.eu/
http://www.soa4all.eu/


47

Event-Driven Architecture: SOA Through the Looking Glass

The Architecture Journal 21

References
ACID
Four Tenets of Service Orientation
Value Networks
The Atom Publishing Protocol

About the Author
Udi Dahan is an internationally renowned expert on software 
architecture and design. Recognized four years in a row with the 
coveted Most Valuable Professional (MVP) award by Microsoft 
Corporation for solutions architecture and connected systems, he is 
also on the advisory board of Microsoft’s next-generation technology 
platforms: WCF/WF/OSLO, the Software Factories Initiative, and the 
Composite Application Library & Guidance. He provides clients all 

over the world with training, mentoring, and high end–architecture 
consulting services—specializing in service-oriented, scalable, and 
secure enterprise architecture and design.

Dahan is one of 33 experts in Europe who are recognized by the 
International .NET Association (INETA); an author and trainer for 
the International Association of Software Architects on Reliability, 
Availability, and Scalability; and an SOA, Web Services, and XML guru 
who is recommended by Dr. Dobb’s—the world’s largest software 
magazine.

Follow up on this topic
•	 Enterprise Service Bus Toolkit 2.0

How Managed Is Your SOA?
by Aarti Kaur

The dynamic, collaborative nature of today’s business processes makes 
it necessary to have a scalable and flexible integration approach. This 
is when the paradigm shift occurred and the IT industry came up with 
SOA as one of the most viable solutions for EAI. The big question is 
whether implementing a pure SOA will address the real-time business 
issues in the long term.

Business Problem
The basic services that are provided by telecom providers are 
commoditized, which forces telecom operators to come up with 
innovative value-added services that will distinguish them from their 
competitors and help them retain their existing subscriber base. 
Introduction of a new service means the ability to test the service 
quickly in the market and, if it is good enough, the ability to scale 
as quickly as possible. On the other hand, if the service is not very 
popular, telecom operators should be able to decommission the 
service and replace it with another, without a lot of integration effort. 
Introduction of a value-added service is marred by various issues—
such as time-to-market delay, fragmented OSS/BSS platforms, and 
high operational and development costs—which results in a lack of 
flexibility to introduce new business models and products rapidly.

SOA Solution
Business-Process Centralization
One of the key issues with the current system is business-process 
redundancy; that is, based on the type of service that is requested, 
the appropriate provisioning and billing subsystems are invoked. 
This process can be automated as an orchestration that consists of 
all the steps (validation, provisioning, and billing) in a sequential 
arrangement. The orchestration invokes the respective generic service 
at each step.

Service Identification and Design
In the current context, one of business pain areas is integration with 
legacy systems, which leads to high integration and maintenance 
costs. Introduction of a level of service abstraction that is composed 
of a set of generic services (which will implement the major service-
processing steps, such as validation, provisioning, and billing) can 
address the aforementioned issue. These, in turn, will call core services 
that are based on the requested service type, line type, and other 
parameters. Core services will interact with the BSS/OSS systems, 
whenever it is required. Some examples of core services are the SMS 

Validation Service, SMS Provisioning Service, SMS Billing service, and 
MMS Provisioning Service.

Event-Driven SOA
Events can be of two types: internal system events and business 
events. A business event is any meaningful activity that alters the flow 
of a business process or triggers a new process. The subscription to 
a service by an end user is an example of a business event, which will 
invoke the orchestration. Usually, services follow a simple request-
reply communication, which might not be appropriate in the current 
scenario. For instance, the generic provisioning service will interact 
with the appropriate provisioning system; the time that is taken to 
provision a service can vary, depending on the type of service that 
is requested. In this case, the provisioning service should be able 
to signal the orchestration when the provisioning is complete. This 
is an example of an internal event and can be addressed by using 
asynchronous Web services, such as “WaitHandlers” or the WCF 
Callback mechanism.

Managing SOA with ESB
ESB is the infrastructure for managing an SOA. The Microsoft ESB 
Toolkit 2.0 itinerary Web service can be used for service discovery 
and invocation. The resolver mechanism can provide a generic 
service resolution. An itinerary service can be an entry point to this 
system; it will read the message and use the ESB resolver mechanism 
internally to invoke the business-process orchestration. Addition 
of a new service in the system means registering the service in a 
service registry and using the appropriate discovery mechanism. 
Message transformations between services can be performed by 
using Microsoft BizTalk maps—thus, each service will complete its 
processing, and the ESB will take care of the message transformations 
and routing.

Conclusion
SOA is a very powerful architectural concept; but, all by itself, it might 
not address the dynamics of a real-time business. Managing SOA 
with ESB offers many potential benefits; also, events and services 
complement each other and cannot be looked at in isolation from one 
other. In combination with event processing and ESB, SOA can provide 
an optimal solution that not only addresses the business complexities, 
but also adds value to it.

Aarti Kaur is a solution architect with Mahindra Satyam, India. The 
complete article is available on her blog.

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Service-orientation#History_of_Service-Orientation_Principles_and_Tenets
http://en.wikipedia.org/wiki/Value_network
http://bitworking.org/projects/atom/rfc5023.html
http://www.microsoft.com/biztalk/en/us/esb-guidance.aspx
http://aartikaur.wordpress.com/2009/08/22/how-effective-is-your-soa/

